Parallel Actin-Independent Recycling Pathways Polarize Cdc42 in Budding Yeast

نویسندگان

  • Benjamin Woods
  • Helen Lai
  • Chi-Fang Wu
  • Trevin R. Zyla
  • Natasha S. Savage
  • Daniel J. Lew
چکیده

The highly conserved Rho-family GTPase Cdc42 is an essential regulator of polarity in many different cell types. During polarity establishment, Cdc42 becomes concentrated at a cortical site, where it interacts with downstream effectors to orient the cytoskeleton along the front-back axis. To concentrate Cdc42, loss of Cdc42 by diffusion must be balanced by recycling to the front. In Saccharomyces cerevisiae, the guanine nucleotide dissociation inhibitor (GDI) Rdi1 recycles Cdc42 through the cytoplasm. Loss of Rdi1 slowed but did not eliminate Cdc42 accumulation at the front, suggesting the existence of other recycling pathways. One proposed pathway involves actin-directed trafficking of vesicles carrying Cdc42 to the front. However, we found no role for F-actin in Cdc42 concentration, even in rdi1Δ cells. Instead, Cdc42 was still able to exchange between the membrane and cytoplasm in rdi1Δ cells, albeit at a reduced rate. Membrane-cytoplasm exchange of GDP-Cdc42 was faster than that of GTP-Cdc42, and computational modeling indicated that such exchange would suffice to promote polarization. We also uncovered a novel role for the Cdc42-directed GTPase-activating protein (GAP) Bem2 in Cdc42 polarization. Bem2 was known to act in series with Rdi1 to promote recycling of Cdc42, but we found that rdi1Δ bem2Δ mutants were synthetically lethal, suggesting that they also act in parallel. We suggest that GAP activity cooperates with the GDI to counteract the dissipative effect of a previously unappreciated pathway whereby GTP-Cdc42 escapes from the polarity site through the cytoplasm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spontaneous Cdc42 Polarization Independent of GDI-Mediated Extraction and Actin-Based Trafficking

The small Rho-family GTPase Cdc42 is critical for cell polarization and polarizes spontaneously in absence of upstream spatial cues. Spontaneous polarization is thought to require dynamic Cdc42 recycling through Guanine nucleotide Dissociation Inhibitor (GDI)-mediated membrane extraction and vesicle trafficking. Here, we describe a functional fluorescent Cdc42 allele in fission yeast, which dem...

متن کامل

Dual modes of cdc42 recycling fine-tune polarized morphogenesis.

In budding yeast, the highly conserved small GTPase Cdc42 localizes to the cortex at a cell pole and orchestrates the trafficking and deposition of cell surface materials required for building a bud or mating projection (shmoo). Using a combination of quantitative imaging and mathematical modeling, we elucidate mechanisms of dynamic recycling of Cdc42 that balance diffusion. Rdi1, a guanine nuc...

متن کامل

Bem3

A highly conserved member of the Rho family of small GTPases, Cdc42 functions as the "master regulator of cell polarity." It has been reported that for proper establishment and maintenance of cell polarity, Cdc42 regulates and requires vesicle trafficking. Importantly, we recently discovered that in budding yeast, vesicle trafficking also controls the localization and function of Bem3, a GTPase...

متن کامل

Establishment of a robust single axis of cell polarity by coupling multiple positive feedback loops

Establishment of cell polarity--or symmetry breaking--relies on local accumulation of polarity regulators. Although simple positive feedback is sufficient to drive symmetry breaking, it is highly sensitive to stochastic fluctuations typical for living cells. Here, by integrating mathematical modelling with quantitative experimental validations, we show that in the yeast Saccharomyces cerevisiae...

متن کامل

Initial Polarized Bud Growth by Endocytic Recycling in the Absence of Actin Cable–dependent Vesicle Transport in Yeast

The assembly of filamentous actin is essential for polarized bud growth in budding yeast. Actin cables, which are assembled by the formins Bni1p and Bnr1p, are thought to be the only actin structures that are essential for budding. However, we found that formin or tropomyosin mutants, which lack actin cables, are still able to form a small bud. Additional mutations in components for cortical ac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2016